The place of Dirac's Equation in Five-Dimensional Riemannian Geometry
نویسندگان
چکیده
منابع مشابه
the place of iranian public diplomacy in central asia
چکیده: نسبت به کارکرد و ماهیت دیپلماسی عمومی در جهان امروز نظریه های متعددی بیان گردیده و جایگاه آن در کنار نظریه های دیگر در محافل آکادمیک و دانشگاهی بررسی و تحلیل گردیده است. نظر به اهمیت دیپلماسی عمومی و جایگاه آن در سیاست خارجی ایران این نوشتار با تمرکز بر دیپلماسی عمومی در منطقه آسیای مرکزی تهیه و تنظیم شده است. این ضرورت از آنجا ناشی می شود که اولاً مفهوم دیپلماسی عمومی در سیاست خارجی ای...
15 صفحه اولIntegrable Systems in n-dimensional Riemannian Geometry
In this paper we show that if one writes down the structure equations for the evolution of a curve embedded in an n-dimensional Riemannian manifold with constant curvature this leads to a symplectic, a Hamiltonian and an hereditary operator. This gives us a natural connection between finite dimensional geometry, infinite dimensional geometry and integrable systems. Moreover one finds a Lax pair...
متن کاملDimensional curvature identities on pseudo-Riemannian geometry
For a fixed n ∈ N, the curvature tensor of a pseudo-Riemannian metric, as well as its covariant derivatives, satisfy certain identities that hold on any manifold of dimension less or equal than n. In this paper, we re-elaborate recent results by Gilkey-Park-Sekigawa regarding these p-covariant curvature identities, for p = 0, 2. To this end, we use the classical theory of natural operations, th...
متن کاملSome Results on Infinite Dimensional Riemannian Geometry
In this paper we will investigate the global properties of complete Hilbert manifolds with upper and lower bounded sectional curvature. We shall prove the Focal Index lemma that will allow us to extend some classical results of finite dimensional Riemannian geometry as Rauch and Berger theorems and the Topogonov theorem in the class of manifolds in which the Hopf-Rinow theorem holds.
متن کاملA Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Edinburgh Mathematical Society
سال: 1946
ISSN: 0013-0915,1464-3839
DOI: 10.1017/s0013091500008592